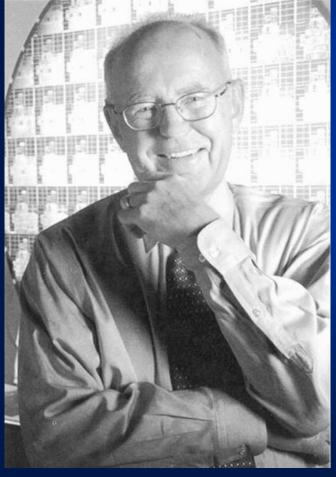


Nanoelectronics on Si

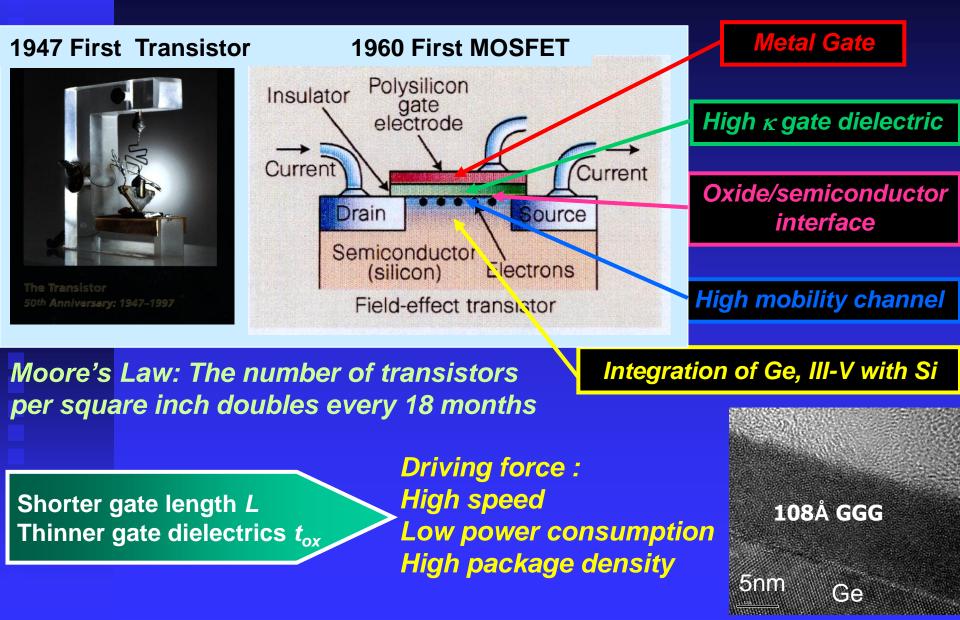
Prof. J. Raynien Kwo 郭瑞年

Physics Department National Tsing Hua University

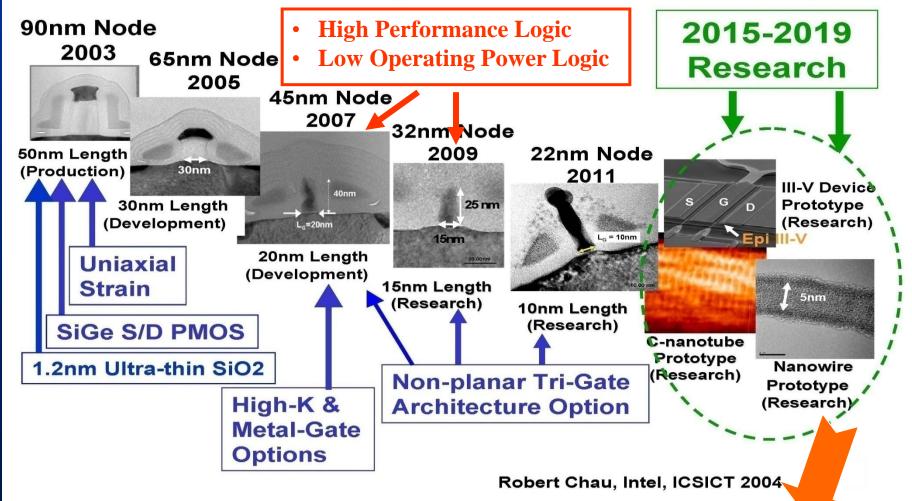
- 縮小尺度至100 nm以內的科技:
 Top-down之奈米結構的雕刻細化
 莫爾定律(Moore's law-每1.5年縮小30%
 尺寸)
- 操控原子(分子)的科技:Bottom-up之 奈米體系的成長組裝 費曼的主張一從底部作起,下面還有無限 寬廣的空間



近來大力推動奈米科技的背景

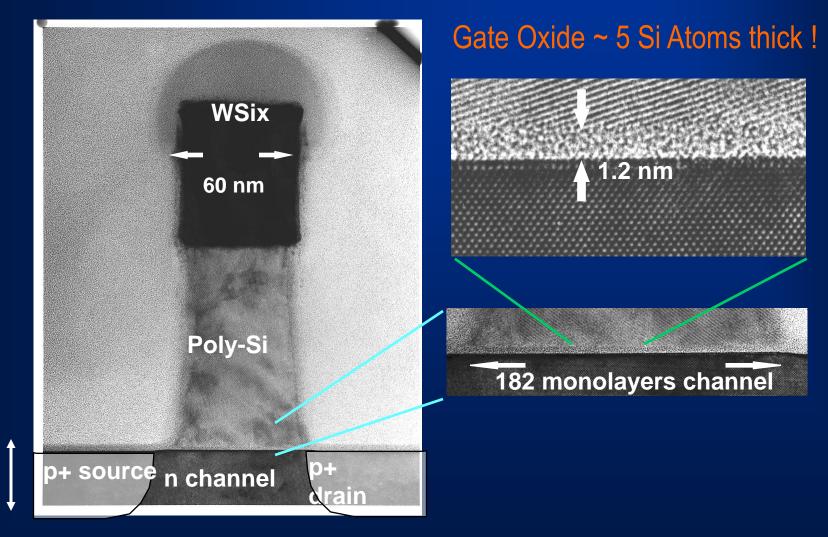

來自微電子學可能遭遇瓶頸的考慮 Moore's Law: 摩爾定律 A 30% decrease in the size of

printed dimensions every 1.5 years. 矽晶上電子原件數每1年半會增加一倍



Si CMOS Device Scaling – Beyond 22 nm node High κ, Metal gates, and High mobility channel

Intel Transistor Scaling and Research Roadmap


Transistor Scaling and Research Roadmap

More non-silicon elements introduced

Scaling Limits to CMOS Technology

Shrinking the junction depth increasing the carrier concentration

Reliability: 25 22 18 16 Å processing and yield issue

Tunneling : 15 Å

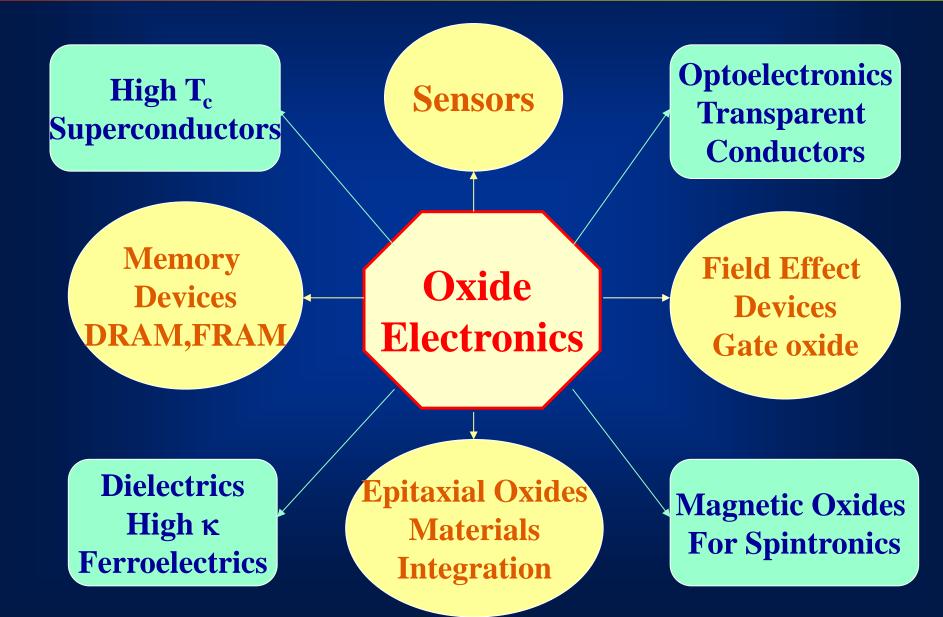
Design Issue: chosen for $1A/cm^2$ leakage $I_{on}/I_{off} >> 1$ at 12 Å

Bonding:

Fundamental Issues---

- how many atoms do we need to get bulk-like properties?
 EELS -- Minimal 4 atomic layers !!
- Is the interface electronically abrupt?
- Can we control roughness?

In 1997, a gate oxide was 25 silicon atoms thick.

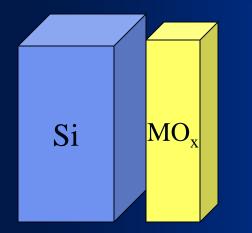

In 2007, a gate oxide will be 5 silicon atoms thick, if we still use SiO_2

> and a 2 of t atoms be at interf

and at least 2 of those 5 atoms will be at the interfaces.

The Development of Oxide Electronics in Two Decades

The alternative high k gate dielectrics replacing SiO₂ for 33 nm Si CMOS by year 2009, and 22 nm for year 2011.

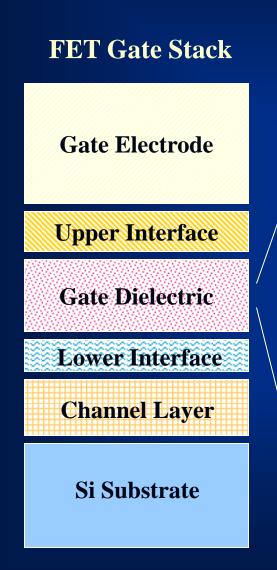

-- Materials requirements

-- Processing integration issues

MBE grown HfO₂ high k gate dielectrics
 -- thermal stability studies by MEIS and TEM
 -- electrical performance

Integration of ALD + MBE template approach

Fundamental Materials Selection Guidelines



 $Si + MO_{x} \longrightarrow M + SiO_{2}$ $Si + MO_{x} \longrightarrow MSi_{2} + SiO_{2}$ $Si + MO_{x} \longrightarrow MSiO_{x} + SiO_{2}$

Thermodynamic stability in contact with Si to 750°C and higher. (Hubbard and Schlom) Alkaline earth oxide, IIIB, IVB oxide and rare earth oxide

- Dielectric constant, band gap, and conduction band offset
- Defect related leakage,
 - substantially less than SiO₂ at $t_{eq} < 1.5$ nm
- Low interfacial state density $D_{it} < 10^{11} \text{ eV}^{-1} \text{ cm}^{-2}$
- Low oxygen diffusivity
- Crystallization temperature >1000°C
- t_{eq} : equivalent oxide thickness (EOT) to be under 1.0 nm $t_{eq} = t_{ox} \kappa_{SiO2} / \kappa_{ox}$

Integration Issues for High K Gate Stack

Critical Integration Issues

- Morphology dependence of leakage *Amorphous vs crystalline films?*
- Interfacial structures
- Thermal stability
- Gate electrode compatibility
- Reliability

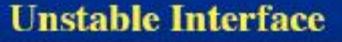
Fundamental Limitations

- Fixed charge
- Dopant depletion in poly-Si gate
- Dopant diffusion
- Increasing field in the channel region

Basic Characteristics of Binary Oxide Dielectrics

Dielectrics	SiO ₂	Al ₂ O ₃	Y ₂ O ₃	HfO ₂	Ta_2O_5	ZrO ₂	La ₂ O ₃	TiO ₂
Dielectric constant	3.9	9.0	18	20	25	27	30	80
Band gap (eV) Band offset (eV)	9.0 3.2	8.8 2.5	5.5 2.3	5.7 1.5	4.5 1.0	7.8 1.4	4.3 2.3	3.0 1.2
Free energy of formation MO _x +Si ₂ → M+ SiO ₂ @727C, Kcal/mole of MO _x	-	63.4	116.8	47.6	-52.5	42.3	98.5	7.5
Stability of amorphous phase	High	High	High	Low	Low	Low	High	High
Silicide formation ?	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hydroxide formation ?	-	Some	Yes	Some	Some	Some	Yes	Some
Oxygen diffusivity @950C (cm ² /sec)	$2x \ 10^{-14}$	5x 10 ⁻²⁵	?	5	5	10 ⁻¹²	5	10 ⁻¹³

Assessing Thermodynamic Stability


Gate Dielectric Material Silicon

3nm

Ideal "Gedanken" Interface

Stable Interface

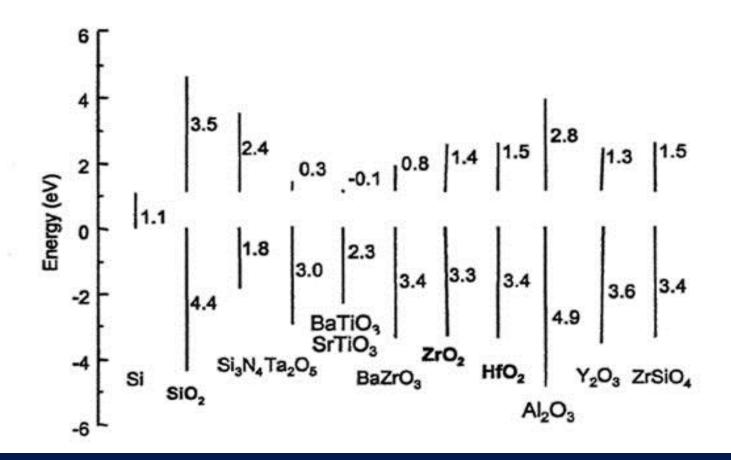
rd_O

Ta2Os(7.5nm)

SiOx(2nm)

Si Substrate

TEM by Don J. Werder G.B. Alers et al., Appl Phys. Lett. 73 (1998) 1517.


E-Si

3 nm

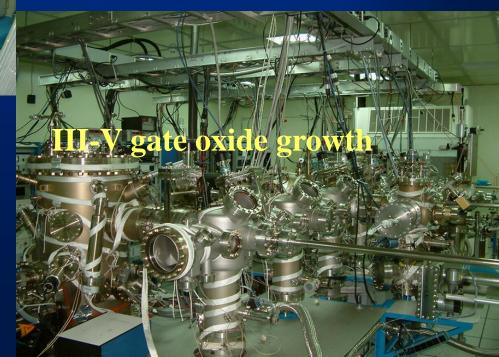
TEM by David A. Muller J. Kwo et al., J. Appl. Phys. 89 (2001) 3920.

Band Offsets of Dielectrics with Si

J. Roberson, JVST 18, 1785, (2000)

World production in year 2003: 1 x 10¹⁹ transistors World population: 6.4 x 10⁹ people So, the world produces:

- ~ 1.5×10^9 transistors/person each year
- ~ 1.2×10^8 transistors/person each month
- ~ 4M transistors/person each day
- ~ 3K transistors/person each minute
- ~ 50 transistors/person per second


And Taiwan produces ~5000 transistors/person/per second

MBE Integrated Multi-chamber System For Nano Electronics

Now located in the Nano Technology Center, ITRI, Hsin Chu, Taiwan since 7/2003.

Multi-chamber MBE with in-situ ALD, XPS, SPM System

High κ Dielectrics for Si

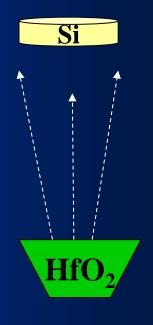
Epitaxial crystalline films on Si

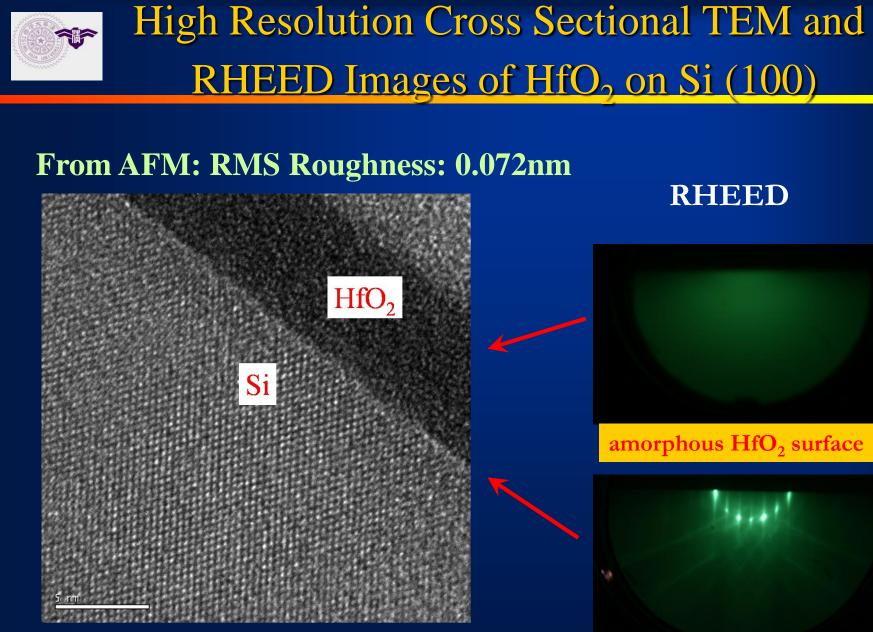
- (A) Cubic CaF₂ structure:
 - (111) orientation is more common than (100)
 - e.g. Ca F_2 (111), CeO₂ (111) on Si(111) with $\varepsilon \sim 26$ YSZ (100) on Si(100) with $\varepsilon \sim 25-30$
- (B) Cubic Mn_2O_3 structure
 - ~ 8 unit cells of incomplete fluorite structure
 - e.g. Y_2O_3 (110) on Si(100) with $\varepsilon \sim 16-18$ Gd₂O₃ (110) on Si(100) with $\varepsilon \sim 12-14$
- (C) Ternary perovskite structure
 - e.g. $SrTiO_3(100)$ on Si(100) with $\epsilon \sim 70-80$ (Oakridge, Motorola) using a Sr silcide ¹/₄ monolayer for epi-growth

Amorphous oxide films on Si

- e.g. Si_3N_4 , Al_2O_3 , Ta_2O_5 , ZrTiSnOx, TiO_2 Interfacial layer present
- Amorphous Gd_2O_3 and Y_2O_3 films
- Amorphous SiO_2 added with Hf or Zr . (G. Wilks et al)

Research Programs


 \blacktriangleright Low defect high κ ultrathin films --Interface engineering --Electrical characterization and optimization ► Identify new material candidates for metal gate --Metal gate/high k integration \blacktriangleright Integration of high κ , and metal gate with Si- Ge strained layer Integration of high κ , and metal gate with strained Si


High k dielectrics for high mobility III-V semiconductors

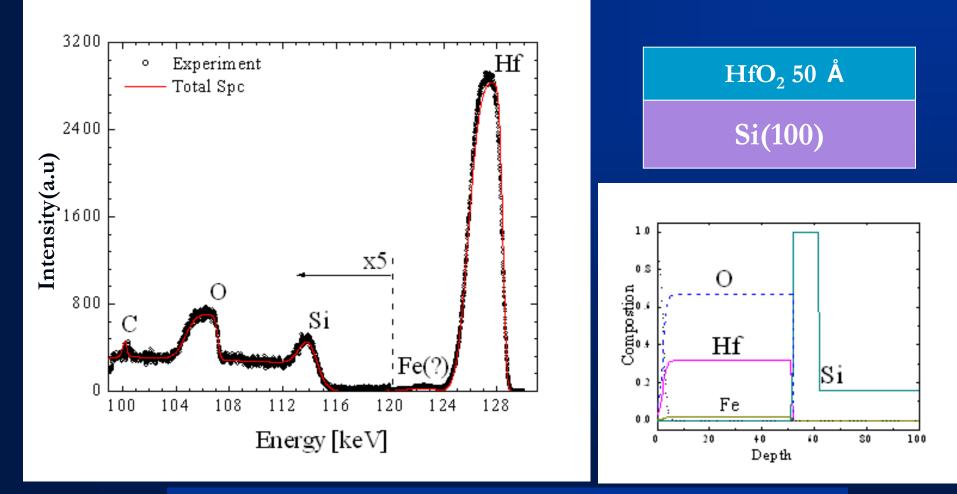
MBE Growth of High κ Oxides

- Ultrahigh vacuum, multi-chamber MBE system.
- Electron-beam evaporation of oxide sources from pressed ceramic pellets.
- 2 inch RCA-cleaned Si wafers, hydrogen passivated, followed by prompt insertion into UHV.
- In-situ heating to 400-500C to attain a (2 x 1) reconstructed Si surface.
- Substrate temperature of 550C for epitaxial films.
- Room temperature deposition for amorphous films.
- Maintain low pressure during growth < 1.0 x 10⁻⁹ torr.

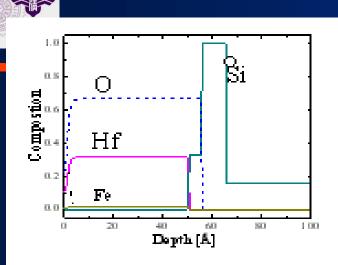
Amorphous HfO_2 film 6.0 nm SiO_2 and Hf silica is nearly absent !

atomically order Si(100) surface

The Technique of Medium Energy Ion Scattering (MEIS)

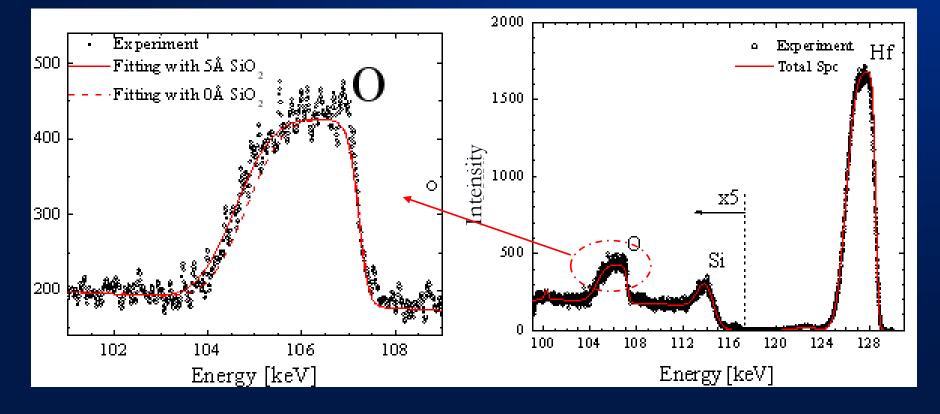

- MEIS is a refinement of the more common technique of Rutherford backscattering spectrometry (RBS), but with enhanced depth and angle resolution.
- In a typical MEIS experiment, a collimated beam of mono energetic (typically 100 keV) light ions (H+ or He+) impinges onto a target along a known direction.
- The energy and angle of the scattered ions are analyzed simultaneously and allow MEIS to measure atomic mass, depth, and surface structure from the following physical principles;.

Mass - ions scattered from the surface of a material undergo energy loss by a 'billiard ball' type collision with surface atoms. The scattered ion energy thus relates directly to the mass of the scattering atom. This effect can be seen in Figure where the signal from O, Si and Ge are separated in energy

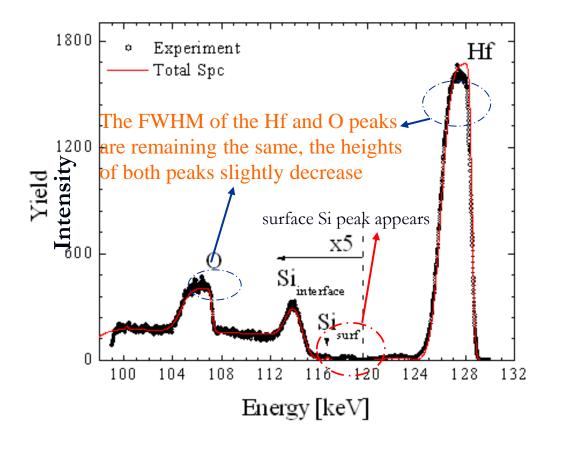

Depth - ions scattered from below the surface lose energy inelastically at a rate proportional to the ion's path length in the target. This extra energy loss thus relates directly to the depth of the scattering atom. In favorable cases MEIS can achieve a depth resolution of one atomic layer.

Surface structure - when the ion beam is aligned with a crystallographic axis the surface atoms shadow deeper atoms from the ion beam. This alignment therefore makes the technique surface specific and, for a particular crystal, certain ingoing directions can allow the ion beam to illuminate only the top one, two, or three layers according to choice. Ions scattered from the second layer will have their outward paths blocked at certain angles by first layer atoms. The variation in scattered ion intensity with angle thus relates to the geometrical arrangement of surface atoms.

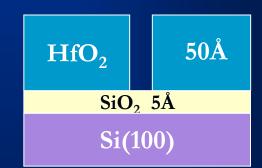
Medium Energy Ion Scattering (MEIS) Study of the High κ Dielectric / Si Interface and Stability


With Rutgers University using 130 keV proton beam It shows the absence of silica near the interface.

Vacuum annealing at 630°C

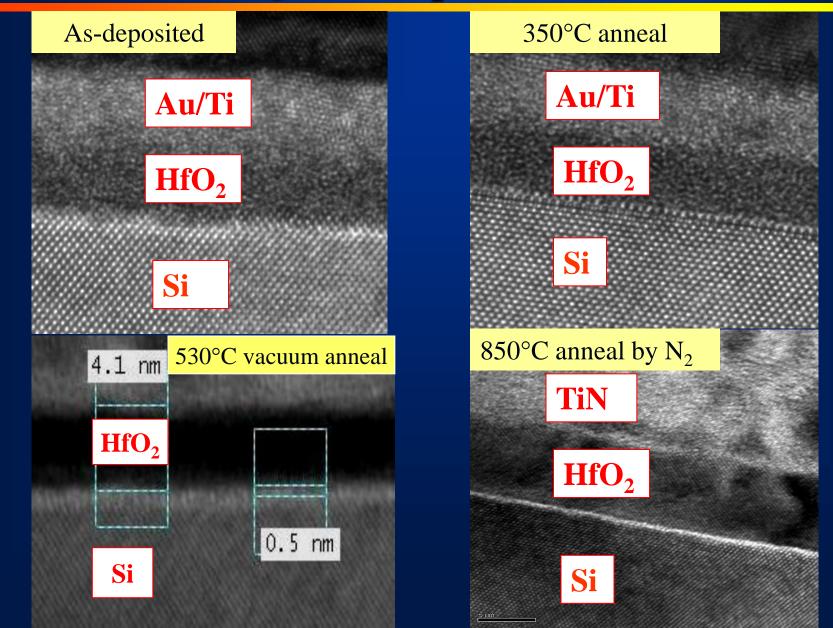


Broadening of the O peak and small increase in the Si peak indicate some interfacial SiO_2 formation about 0.4 nm.



Annealing from 630°C to 950°C

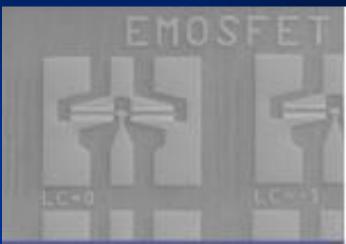
A possible structure after high temperature anneal

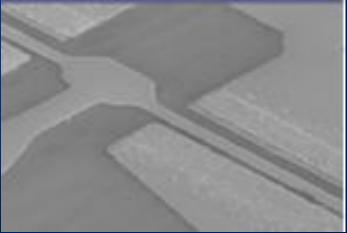


Discontinuities and islands were formed in HfO_2 .

MEIS with Rutgers University

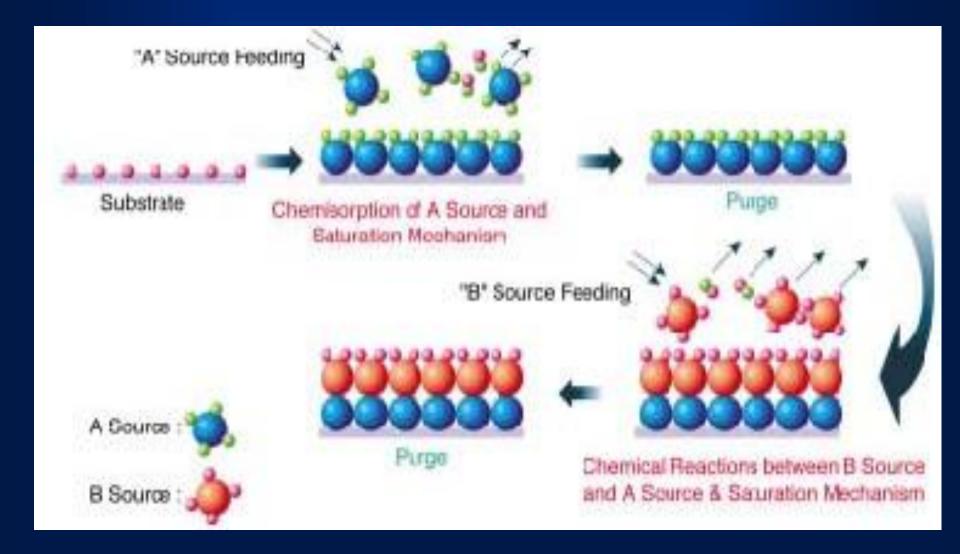
HRTEM Study of Thermal Stability of High κ HfO₂ Gate Stacks

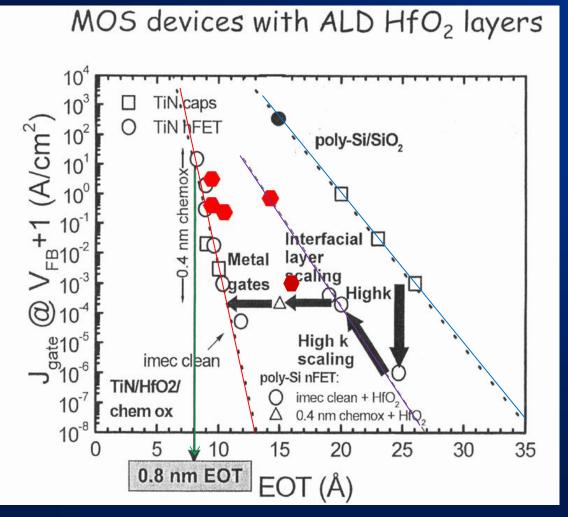

- Thermal stability of thin films
- $\succ HfO_2 \longrightarrow Lowering the dopant activation temperature to 700°C$
- > TiN \rightarrow Using Ti/TiN bilayer structure
 - Process integration
 - ➤ 4 inch Si (LOCOS)→2 inch Si (MBE)


 \rightarrow Successful integration

$TiN/HfO_2/Si$ High κ MOSFET

- A self-sligned process
- With LOCOS isolation
- \succ HfO₂ gate dielectrics
- TiN metal gate
- 2 inch MBE-grown high κ films
- ➤ A 4 inch Si line in ERSO for isolation
- A 6 inch Si line in NDL for processing
 - W / L ~ 100 μm/ 1.5 μm
 - EOT ~ 26 A ($t_{ox} = 10 \text{ nm}$)
 - $I_d \sim 8.5 \text{ mA } @ V_{gs} = 4V$
 - Gm = 48.5 mS/mm





Atomic Layer Deposition (ALD)

Growth Mechanism : Formation of interfacial SiO₂ is hard to avoid.

Comparison between the MBE and ALD films

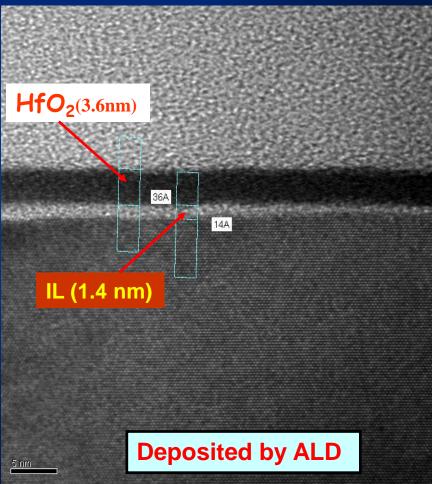
M. Houssa in Symposium D, MRS Spring Meeting, April 12-16, 2004. MBE-grown
 Au/HfO₂/Si MOS diodes
 are denoted in red hexagons

★ HfO₂ film 4.4 nm thick, with J_L ~ 10^{-3} A/cm², κ of 21, and EOT of 0.9 nm

* $t_{eq} = EOT$ Equivalent Oxide Thickness $t_{eq} = t_{ox} \kappa_{SiO2} / \kappa_{ox}$

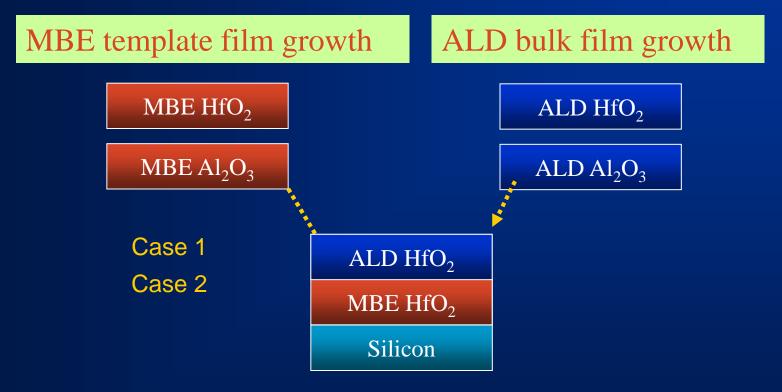


Can you make an excellent HfO₂ Film with a low EOT ?


Interface Engineering !

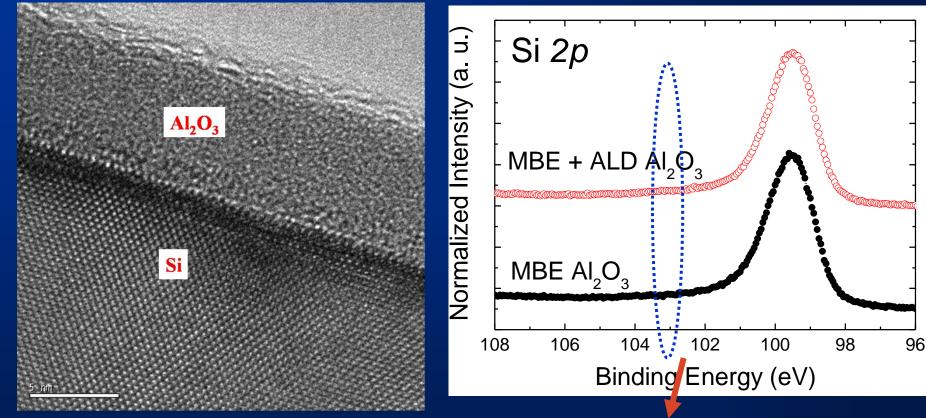
Structural properties of MBE-grown HfO₂

HRTEM


HRTEM

The MBE Template for ALD Growth

MBE and ALD composite film deposition procedure



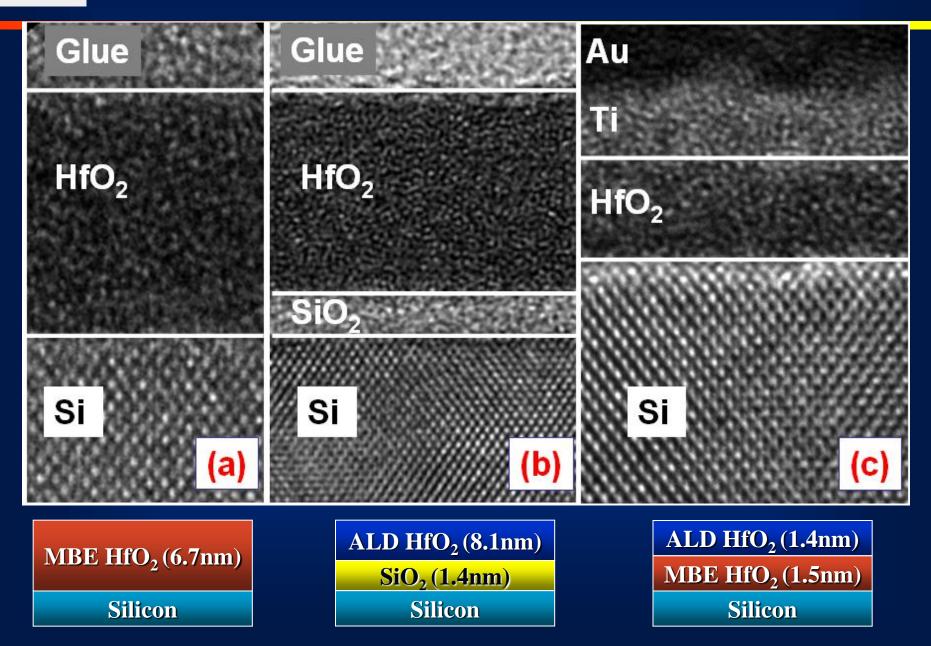
• Low pressure (<1x 10⁻⁸ torr) maintained during MBE growth • ALD precursors : TMA, H₂O, T_{substrate} : 300 $^{\circ}$ C

The structure of ALD Al₂O₃ with a MBE Al₂O₃ template

ΓΕΜ

AR-XPS

No peak formed at 103.4eV


No SiO₂ formed at interface for both MBE and MBE+ALD Al₂O₃

For HfO_2 , have achieved EOT= 0.7 nm



Free structure of ALD HfO₂ with a MBE HfO₂ template

Reference electrical characteristics of ALD/MBE HfO₂ (2.9nm)

	Our work (TiN//p-Si)									
Dielectrics	MBE- HfO ₂ 10nm	ALD- HfO ₂ 10nm	YDH 10nm	ALD-HfO ₂ 8nm+ MBE-HfO ₂ 2nm	ALD-HfO ₂ 4nm+ MBE-HfO ₂ 2nm	YDH 7nm+ Y ₂ O ₃ 1nm	ALD- HfO₂			
L _g (µm)	1.5	1.5	1.5	1	1	1	0.08			
EOT(nm)	2.5	3	1.5	2.5	1.5	1.6	1			
G _m (mS/mm)	35	55	70	120@V _G =3.5V 100@V _G =2.5V	<u>100@V_G=2.5V</u> 1250 [#] 1875*	<u>125@V_G=2.5V</u> 1560 [#] 2500*	132 1650			
l _d (mA/mm)	80	55	118	240@V _G =4V 70@V _G =2.5V	<u>155@V_o=2.5V</u> 1940 [#] 2910*	<u>195@V_o=2.5V</u> 2440 [#] 3900*	140 ¹ 1750			

After normaliztion to gate length of 0.08 µm

* After normaliztion to gate length of 0.08 µm and EOT of 1 nm

¹ R. Chau, et al, IEEE Electron Device Letters **25**, No. 6, 408 (2004)

 First demonstration of atomically abrupt high k HfO₂/Si interface.

- Successful integration of the 6 inch Si CMOSFET processing in NDL with our 2" MBE high κ dielectric films using a TiN metal gate to produce a gate length 1.5 µm transistor device.

Novel ALD + MBE template approach, superior electrical performance.